IV B. TECH I SEMESTER REGULAR EXAMINATIONS, NOVEMBER - 2023 MACHINE LEARNING (COMMON TO CSE, CIC \& AID BRANCHES)

Time: 3 hours
Max. Marks: 70
Note : Answer ONE question from each unit (5 $\times \mathbf{1 4}=\mathbf{7 0}$ Marks)

UNIT-I
1 What do you mean by a well -posed learning problem? Explain the important features that are required to well -define a learning problem
(OR)
2 a) Write short notes on PAC learning.
b) Explain in detail about the models of Machine Learning.

UNIT-II
3 Write ID3 Algorithm and explain the procedure in building a decision
tree from the dataset given below.

S.No.	Age	Income	Student	Credit- rating	Class label: Buys Computer(Yes/NO)
1	youth	high	No	fair	No
2	youth	high	No	excellent	No
3	Middle- aged	high	No	fair	Yes
4	Senior	medium	No	fair	Yes
5	Senior	low	Yes	fair	Yes
6	Senior	low	Yes	excellent	Yes
7	Middle- aged	low	Yes	excellent	Yes
8	youth	medium	No	fair	No

(OR)
4 a) Explain about Multi class and Multi-label classification.
b) Discuss in detail about Logistic regression.

UNIT-III
5 a) Explain the concept of a Perceptron with a neat diagram.
b) Describe Support Vector machines classifier.
(OR)
6 Explain in detail about the probabilistic models with examples. UNIT-IV
For the 2D data, $\{(1,1),(1,3),(3,1),(3,3),(11,11),(11,13),(13$, $11)$, (13, 13)\}. Apply $\mathrm{K}-$ means clustering with $\mathrm{K}=2$. Let the initial seed point be $(1,3)$ and $(13,11)$. Clearly show the steps followed by the method. Draw appropriate diagrams at each stage.
(OR)
8 a) Given two objects represented by the tuples $(22,1,42,10)$ and (20, [7M] 0, 36, 8)
(i) Compute the Euclidian distance between the two objects
(ii) Compute the Manhattan distance between the two objects
(iii) Compute the Minkowski distance between two objects using $q=3$.
b) Interpret the Outlier analysis with example.

UNIT-V
9 a) Describe ensemble learning methods in detail.
b) Write short notes on Bagging and Boosting.
(OR)
10 Illustrate Error correcting output codes in detail with suitable [14M] examples.

